skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nandula, Vijay K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Extrachromosomal circular DNAs (eccDNAs) are found in many eukaryotic organisms. EccDNA-powered copy number variation plays diverse roles, from oncogenesis in humans to herbicide resistance in crop weeds. Here, we report interspecific eccDNA flow and its dynamic behavior in soma cells of natural populations and F1 hybrids of Amaranthus sp. The glyphosate-resistance (GR) trait is controlled by eccDNA-based amplification harboring the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene (eccDNA replicon), the molecular target of glyphosate. We documented pollen-mediated transfer of eccDNA in experimental hybrids between glyphosate-susceptible Amaranthus tuberculatus and GR Amaranthus palmeri. Experimental hybridization and fluorescence in situ hybridization (FISH) analysis revealed that the eccDNA replicon in Amaranthus spinosus derived from GR A. palmeri by natural hybridization. FISH analysis also revealed random chromosome anchoring and massive eccDNA replicon copy number variation in soma cells of weedy hybrids. The results suggest that eccDNAs are inheritable across compatible species, contributing to genome plasticity and rapid adaptive evolution. 
    more » « less